
Post-Quantum cryptography in OpenPGP

NIST Fifth PQC Standardization Conference

Aron Wussler1

Proton AG, aron@wussler.it

1 Introduction

This paper reports on a project that aims at introducing Post-Quantum (PQ) cryptography for
e-mail and file encryption, as well as software signing in the OpenPGP protocol. In the last years
there has been a push among internet protocols to deploy asymmetric cryptography that can resists
attacks with quantum computers. Other internet protocols, such as TLS [KSL+19,KV,ELPa] or
SSH [ELPb,SKD20] have been experimenting with PQ schemes to determine any performance
drawback or issue with the larger artifacts.

The project has so far produced a draft standard proposal [KSW23] for the use of PQC in OpenPGP,
which is standardized at the Internet Engineering Task Force (IETF).

The criteria chosen in this project were to use already standardized algorithms, mostly relying on
the National Institute of Standards and Technology (NIST) and the Crypto Forum Research Group
(CFRG), to provide confidentiality and integrity. Given these cryptographic primitives, the project
consists in developing a safe standard proposal, with reasonable and coherent security guarantees,
considering the performance and regulatory compliance trade-offs. The main challenges consisted
in choosing how to build the hybrid schemes, how many schemes to propose, how to combine the
hybrid secrets securely, and how to handle the significantly larger artifacts.

To evaluate the results of the project, the draft standard was implemented in the go-crypto Golang
library and benchmarked.

2 Motivation

The interest for post-quantum encryption gained particular traction in 1994, when Peter Shor
found an algorithm to factor large numbers in polynomial time given a sufficiently large quantum
computer [Sho94].

Even though to the best of our knowledge, a quantum computer capable of cracking the state of
the art does not yet exist, we can refer to Mosca’s theorem [EHH+20], to understand why this is
already relevant. Let x be the number of years that the data to be protected must remain secured, y
be the number of years needed to convert the corresponding system to quantum computer resistant
cryptography, and z be the number of years it will take for quantum computers to exist that
threaten the cryptography currently in use. Standardization needs to happen before x+ y > z.

Given that standardization is a lengthy and complex process, than OpenPGP is an asynchronous
protocol where changes can take a long time to propagate, and that the encrypted data is supposed
to stay confidential for the years to come, we need to ensure that the process is carried out early
enough.

3 OpenPGP

OpenPGP is a protocol mostly used to perform E2EE communication, encrypted data storage,
software signing, and authentication. Most of its uses are asynchronous and key distribution is
generally off-band. This project has been designed as an extension of its latest version [WHWY24],
introducing new code points for the PQ algorithms.

It is important to note that OpenPGP presents some significant differences from other protocols
where PQ algorithms were were experimented, such as TLS or OpenSSH, because of its asyn-
chronous context. Removing real-time requirements implies some advantages, enabling larger arti-
facts and slower processing times, and some disadvantages, namely the legacy burden. Artifacts,
such as ciphertexts and signatures may be accessed years after their creation, and therefore libraries
must keep long term support for deprecated algorithms.

OpenPGP is also being used on secure enclaves and consumer Hardware Security Modules (HSMs),
thus it is important that the used algorithms will be available on said devices. Finally, OpenPGP is
a critical component of Linux software signing, where hash-based signatures are a welcome feature.
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4 Algorithm selection

When embedding PQ cryptography into an existing protocol, several design decisions have to be
taken, that are a trade off between security, implementation complexity, crypto-agility, and usability.

In the PQ algorithm selection process we decided to evaluate only algorithms undergoing a standard-
ization process, because of OpenPGP’s legacy burden: once a scheme is deployed, implementations
have to support it for a virtually unbounded time, and offering a non-standard algorithm compli-
cates future implementations, for instance by having poor access to certified libraries or security
fixes.

We excluded all the stateful schemes, because OpenPGP keys are often cloned across devices and
provide very poor support for state synchronization. We therefore selected SLH-DSA because offer-
ing a stateless hash-based scheme is very interesting, as it provides long-term security guarantees for
software signing. OpenPGP can bear the expense of greater bandwidth usage and slower signature
generation.

Structured lattice and code-based algorithms are also interesting, since they provide performance
similar to the existing algorithms.

We selected ML-KEM because it offers good performance, comparable to elliptic curves, and artifact
size in the 1 to 3 KB range for security level 3 and 5. We took in consideration that NIST believes
that Module Learning With Errors (MLWE) is suitable for high-performance cryptosystems without
sacrificing security, and the ML-KEM team provides an extensive security analysis with concrete
estimates for the security parameters. It is therefore the only Key Encapsulation Mechanism (KEM)
candidate chosen for standardization, eventually giving it Federal Information Processing Standard
(FIPS) compliance and setting it up for wide adoption with solid and reviewed implementations.
ML-KEM has some known patent issues, but in November 2022 the intellectual property agreement
was released [Cou22], stating that adopting the NIST standardized version of ML-KEM is going to
be royalty-free.

We also selected ML-DSA because it ensures a high throughput, with performance close to elliptic
curve schemes, and artifacts in the 1 to 5KB range for security level 3 and 5. Furthermore it has been
chosen as main candidate from NIST, carrying the same advantages as ML-KEM, and has already
been successfully implemented on Field Programmable Gate Array (FPGA) circuits [RMJ+21].

For these two structured lattice based schemes, as recommended from the BSI [EHH+20] as well
as the authors of CRYSTALS-Kyber and CRYSTALS-Dilithium, we opted for introducing hybrid
algorithms for ML-KEM and ML-DSA. Given that OpenPGP is a protocol with very little crypto-
agility, where long-lived keys are very common, combining the security of both the elliptic curves
and PQ was deemed a sound decision by both the authors and the community; ensuring that any
flaw in the algorithm or implementation does not compromise data security.

We excluded Falcon [FHK+20] because it requires floating-point arithmetics, therefore making im-
plementations complex, especially if constant-time operations are desired. In comparison to the
other candidates, it features compact signatures, but given that bandwidth is not a critical require-
ment for OpenPGP, ML-DSA appears as a better lattice-based candidate. To reduce the legacy
burden we decided to limit the number of lattice-based candidates to one.

We also excluded Classic McEliece [ABC+22], because to achieve PQ safe communication, Classic
McEliece presents slow key generation and requires large public key size. While the former is not an
issue in the OpenPGP context, the latter can be problematic with respect to some key distribution
systems. It is important to consider that OpenPGP certificates can contain multiple subkeys, and
this may easily generate certificates in the tens of megabytes. For instance, a typical keyserver
dataset of 6 million keys currently fits into 80GB at runtime, while it would shift to terabytes if
McEliece keys became commonplace.

Finally we excluded BIKE and HQC because there is no active standardization process. If a stan-
dardization body were to initiate the process, it could be a great candidate for an alternative KEM
based on a different underlying problem.

4.1 Composable vs Composite

When implementing hybrid schemes we opted for composite schemes, designed to have a fixed
combination of two or more algorithms, coming as an indivisible package. From the implementa-
tion perspective, the composite model is simpler, because it appears as a single algorithm on the
protocol layer, i.e. the current OpenPGP algorithm structure can be reused. The implementation
is agnostic to the cryptographic primitive, as long as it can offer a KEM interface to encapsu-
late and decapsulate a key, or a signer interface to sign and verify. We encountered no difficulty
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implementing this interface into the existing protocol, as we could reuse the Elliptic Curve In-
tegrated Encryption Scheme (ECIES) KEM construction. Furthermore, composite schemes have
a simpler cryptographic construction: for the considered algorithms all the artifacts have a fixed
length, ensuring a straightforward data encoding and a simpler key combiner construction.

While composable schemes allow more crypto-agility, as creating a new combination does not require
standardization of a new identifier or updating the deployed software, we still preferred composite
schemes because they are easy to identify, provide a simple framework to establish a security policy,
reduce overall complexity, and improve interoperability.

Furthermore, choosing composite schemes prevented from creating backwards-compatible keys and
artifacts. While this may be seen as a user-hostile choice, we argue that key distribution will anyway
be necessary for the PQ keys, and users can choose to distribute both PQ and traditional keys (see
section 7). This approach significantly reduces the attack surface for downgrade attacks and lets
the key holder decide what is their policy regarding PQ messages.

Finally, it is to be considered that if an implementation limits the flexibility by reducing the amount
of possible combinations using a whitelist to address the interoperability or security policy concerns,
the composable approach loses any practical advantage compared to the composite schemes, as
allowing a new combination requires update and deploy of all implementations, but retains the
implementation complexity disadvantages.

4.2 Algorithm list

To encrypt messages, we selected to use the following KEMs: ML-KEM hybrid with X25519, X448,
P-256, P-384, Brainpool P-256, or Brainpool P-384. These curves were selected because they are
already supported by OpenPGP. Conforming with the existing specification, X25519 has been
chosen as mandatory to implement, X448 as recommended, and the remaining are optional; this to
fulfill specific compliance requirements and compatibility with existing hardware.

The secrets derived from ML-KEM and the curve are then combined using a Keccak Message
Authentication Code (KMAC) based key combiner compliant with NIST SP800-56C [BCD20] that
preserves the Indistinguishability under adaptive Chosen Ciphertext Attack (IND-CCA2) security
of each KEM.

To sign messages, we selected ML-DSA hybrid with Ed25519, Ed448, P-256, P-384, Brainpool P-
256, or Brainpool P-384; the first two curves with the Edwards-curve Digital Signature Algorithm
(EdDSA), while the latter four with the Elliptic Curve Digital Signature Algorithm (ECDSA). For
the same reasons as ML-KEM, Ed25519 has been chosen as mandatory to implement, Ed448 as
recommended, and the remaining are optional.

We also selected SLH-DSA as standalone, as the confidence in its proof and the security of the
underlying hashes is very high. Both the SHA-2 and SHAKE variants are available, the former is
recommended, the second optional, because the SHA-2 variant offers significantly better perfor-
mance while retaining the security guarantees.

This choice was dictated from the different use cases of the protocol: some users desire a high
security margin for long-term keys, and are willing to sacrifice performance, while some others
require fast operations. SLH-DSA is in fact a very conservative choice, that offers a solid security
proof at the expense of slower operations. To ease the burden of the trade-off made with SLH-DSA
we decided to parameterize it, allowing implementations and users to determine how critical is
speed in their usage.

5 Key Combination

To achieve hybrid encryption, a Key Derivation Function (KDF) derives a Key Encryption Key
(KEK) from the traditional and PQ key shares. We opted for a generic KMAC-based construction,
compliant with NIST SP800-56C [BCD20]. Featuring a generic construction allows to extend the
specification with further KEMs featuring fixed-length key shares without having to implement a
second key combiner. As long as one of the components provides IND-CCA2 security, the overall
construction is also IND-CCA2 secure. This property is proven in the paper “KEM Combiners” by
Giacon, Heuer, and Poettering [GHP18], in particular the combiner in example 3 of figure 1, based
on a Split-Key Pseudo-Random Function (SKPRF). Assuming there are no weaknesses found in
the Keccak permutation it can be shown that KMAC is an SKPRF, therefore our construction is
equivalent to said example.

The following KMAC-based design is used:

// multiKeyCombine(eccKeyShare, eccCipherText,
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// mlkemKeyShare, mlkemCipherText,

// fixedInfo, oBits)

//

// Input:

// eccKeyShare - the ECC key share encoded as an octet string

// eccCipherText - the ECC ciphertext encoded as an octet string

// mlkemKeyShare - the ML-KEM key share encoded as an octet string

// mlkemCipherText - the ML-KEM ciphertext encoded as an octet string

// fixedInfo - the fixed information octet string

// oBits - the size of the output keying material in bits

//

// Constants:

// domSeparation - the UTF-8 encoding of the string

// "OpenPGPCompositeKeyDerivationFunction"

// counter - the fixed 4 byte value 0x00000001

// customizationString - the UTF-8 encoding of the string "KDF"

eccData = eccKeyShare || eccCipherText

mlkemData = mlkemKeyShare || mlkemCipherText

encData = counter || eccData || mlkemData || fixedInfo

MB = KMAC256(domSeparation, encData, oBits, customizationString)

The Internet Research Task Force (IRTF) draft draft-ounsworth-cfrg-kem-combiners-03 [OWK23]
was derived from a generalization of this construction, and is proposed as a protocol-agnostic key
combiner.

6 Salted Hashes

OpenPGP uses a hash-then-sign paradigm on the protocol level, in order to implement easier data
streaming. In particular, there is a One-Pass Signature (OPS) packet preceding the data, informing
that a signature packet is at the end of the data stream. Version 6 OPS include an unpredictable salt
that is prepended to the hashed data, which size depends on the hashing algorithm. This makes v6
OpenPGP signatures non-deterministic and protects against a broad class of attacks that depend
on creating a signature over a predictable message [LP20]. This feature ensures that target-collision
resistance is sufficient for the hash function used, similar to the signature randomization mechanism
of SLH-DSA.

It was considered to alternatively remove the hash-then-sign paradigm altogether and feed the PQ
algorithms directly the message as input, but this would have required extensive changes to the
OpenPGP protocol: implementations might not have access to the data multiple times to rewind
after generating the pseudorandom salt from the message.

Considered that PQ algorithms are bound to use version 6 signatures, featuring salted hashing, the
PQ draft specification proposes to keep the hash-then-sign paradigm. The internal SLH-DSA and
the OpenPGP salt lengths are required to match.

7 Migration strategies

We propose two different migration strategies, depending on the use case. The first strategy is based
on having two independent keys: PQ and traditional. Older clients will be able to use the traditional
key, while newer clients can prefer the PQ key. To enhance this approach it could be interesting to
add to the specification a “key superseded” signature, that allows to designate a replacement key
without effectively revoking the old one.

The second strategy consists of attaching a PQ encryption subkey to a traditional existing key. By
design, we require implementations to prefer PQ keys over traditional ones, while legacy implemen-
tations will safely ignore the unknown algorithm identifier. This approach eases key distribution,
as only one key per recipient has to be shared, but provides only transitional authenticity, as the
key will have to be replaced before cryptographically relevant quantum computers are introduced.

8 Performance Analysis

A a proof-of-concept implementation was developed starting from go-crypto, a Golang library im-
plementing OpenPGP, using existing libraries to provide cryptographic primitives. This has proven



Post-Quantum cryptography in OpenPGP 5

to be relatively straightforward given the fixed combination design, requiring only to implement
the new algorithms and some minor changes to the protocol level implementation.

The performance of the implementation was benchmarked to compare it with the existing algo-
rithms on desktop devices and Android phones, compiling it via gomobile.

To measure the performance of the algorithms and implementation we timed end-to-end key gener-
ation, parsing, encryption, signing, and verification of round 3 submissions of ML-KEM, ML-DSA
and SLH-DSA.

Our objective with these measurement is to provide a realistic user perspective and reason about
the user experience. We therefore chose to measure the end-to-end performance of the implemen-
tation rather than measuring the performance of the algorithm itself, that has generally been well
documented in the context of the NIST PQ competition [MAA+22].

To evaluate the benchmark results we need to look into the structure of the generated version 6
certificates. Here we use a very plain structure, that is also the default for go-crypto, with a primary
certification and signature capable public-private keypair and an encryption capable subkey. The
primary key signs a direct key signature containing the user preferences, a single primary user
identity, and the encryption subkey via a binding signature.

Therefore, key generation operation consists of two different primitive key generations and three
signature generations; key parsing includes three signature verifications; while encryption, decryp-
tion, signing and verification are just the primitive operations over 1 KB of randomly generated
plaintext.

In these tests, we compare the newly proposed algorithms with the the matching set of existing
algorithms: RSA-2048, RSA-3072, RSA-4096, Ed25519, Ed448, P256, P384, Brainpool256, and
Brainpool384. The matching between signing and KEM algorithms is shown in table 1.

Primary key Algorithm Encryption Sub-key Algorithm

RSA RSA

Ed25519 X25519

Ed448 X448

ECDSA-NIST-P-256 ECDH-NIST-P-256

ECDSA-NIST-P-384 ECDH-NIST-P-384

ECDSA-brainpoolP256r1 ECDH-brainpoolP256r1

ECDSA-brainpoolP384r1 ECDH-brainpoolP384r1

ML-DSA-65 + Ed25519 ML-KEM-768 + X25519

ML-DSA-87 + Ed448 ML-KEM-1024 + X448

ML-DSA-65 + ECDSA-NIST-P-256 ML-KEM-768 + ECDH-NIST-P-256

ML-DSA-87 + ECDSA-NIST-P-384 ML-KEM-1024 + ECDH-NIST-P-384

ML-DSA-65 + ECDSA-brainpoolP256r1 ML-KEM-768 + ECDH-brainpoolP256r1

ML-DSA-87 + ECDSA-brainpoolP384r1 ML-KEM-1024 + ECDH-brainpoolP384r1

SLH-DSA–simple–SHA2 ML-KEM-1024 + X448

SLH-DSA–simple–SHAKE ML-KEM-1024 + X448

Table 1. Default matching for public and private keys in go-crypto

8.1 Artifact Size

The artifact size for each considered algorithm combination and operation is shown in fig. 1. These
results are implementation specific, and as much as they do not vary depending on platform, other
implementations might serialize packets differently, effectively generating similar but not identical
sizes. As it is here done for performance benchmarking, we use the default settings and 1 KB
uncompressed plaintext to generate the results.

At a first glance it appears evident that PQ algorithms, and in particular SLH-DSA have much
larger artifacts than any traditional algorithm, 4096 bit RSA included. No PQ algorithm in the
standardization process unfortunately provides artifacts under a few KB in size, let alone in the
hundred of bytes like EC. This trade-off is well-known, and widely accepted in the community, and
part of this project’s contribution is to investigate what impact this has on the existing protocol.

It is to be noted, that for encryption and signature the sizes reported in fig. 1 refer only to the
algorithm overhead, i.e. excluding the signature plaintext and the encrypted ciphertext. For in-
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stance, for a 1KB large email, X25519 will add 0.2KB of overhead totalling 1.2KB message size,
while ML-KEM-768 combined with X25519 will add 2KB of overhead, totalling 3KB.

8.2 Desktop Performance Analysis

For desktop devices, the measurements were taken using the integrated Golang benchmarking tool.
For each measurement we repeated the operation 8 times and averaged the time, repeating this
procedure 10 times.

Measurements were taken on an idling x86 Intel(R) Core(TM) i5-8265U CPU, clocked at 1.60 GHz.
A consumer laptop was chosen to ensure realistic measurements from the user perspective.

We can observe an overview of the median performance of all considered algorithms in fig. 2. Here
we selected a logarithmic scale on the time axis: performance varies in a very large range, from 0.15
ms to 15 s, given the trade-offs between security, size, and speed.

8.3 Mobile Performance Analysis

In order to perform measurements on mobile devices, we first had to compile GopenPGP1 using
go-mobile2 for Android: this builds a library that can be accessed from applications via bindings.
A simple application using Google’s instrumented test suite AndroidJUnit4 was then developed
and run on a Fairphone 4, featuring an 8-core 64-bit Qualcomm LAGOON ARM CPU clocked at
2.1 GHz. This application ran each test 16 times and provided the raw execution time. Similarly
to the desktop tests, the results are plotted using a logarithmic scale for the time axis, in fig. 3.

9 Results

While artifacts from PQ algorithms are significantly larger than their traditional counterparts, they
do not seem to be problematic for most OpenPGP use cases. In particular, email can already handle
the new keys, ciphertexts, and signatures seamlessly. Some considerations need to be done when
scaling: while significantly larger artifacts do not affect the single message, they may be problematic
for providers deploying this standard to million of messages. An edge case is the fast variant of
SLH-DSA, that presents signatures over 10KB in size. They will require re-thinking of the user
experience, especially when signing small ciphertexts.

Regarding performance, the lattice-based algorithms add just a small overhead, keeping the hybrid
schemes’ performance still significantly above RSA. Since RSA is still widely used, we can assert
that this should not imply any user experience drawback. In particular for encryption the overhead
is minimal, and the efficiency of EC is preserved. On the other hand, SLH-DSA can present some
user experience challenges when signing or generating new certificates. These will need to be handled
from the application layer when switching to PQ algorithms: the implementation may require up to
3s for signing and up to 20s for key generation, therefore an indicator of progress may be necessary.
All things considered, in particular for the mandatory algorithms, the implementation has a similar
performance profile to today’s operations, allowing for a transparent migration from the user’s
perspective.

10 Directions for Future Research

10.1 OpenPGP Standardization

This project was developed in collaboration with the community, in order to pave the way for stan-
dardization into an IETF RFC. The following steps will be determined at the upcoming meetings,
where the draft has been proposed for adoption.

10.2 Expanding the Algorithm Selection

To provide a higher degree of security in the OpenPGP environment, a second PQ KEM could
be standardized, based on a different underlying problem than structured lattices. In particular,
code theory based algorithms such as BIKE or HQC are considered very interesting, if NIST
would consider them ready and provide a standard to follow. Since OpenPGP presents a serious
legacy burden, and once support for an algorithm is added it is very difficult to deprecate it,
implementation should strictly follow standardization: this prevents having to support non-standard
implementations forever. The publication of another algorithm set can in any case follow in a
different RFC.
1 https://github.com/ProtonMail/gopenpgp
2 https://github.com/golang/mobile
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